Extensions 1→N→G→Q→1 with N=D5xC22:C4 and Q=C2

Direct product G=NxQ with N=D5xC22:C4 and Q=C2
dρLabelID
C2xD5xC22:C480C2xD5xC2^2:C4320,1156

Semidirect products G=N:Q with N=D5xC22:C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC22:C4):1C2 = D5xC22wrC2φ: C2/C1C2 ⊆ Out D5xC22:C440(D5xC2^2:C4):1C2320,1260
(D5xC22:C4):2C2 = C24:3D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):2C2320,1261
(D5xC22:C4):3C2 = C24.33D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):3C2320,1263
(D5xC22:C4):4C2 = D5xC4:D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):4C2320,1276
(D5xC22:C4):5C2 = C10.402+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):5C2320,1282
(D5xC22:C4):6C2 = D20:20D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):6C2320,1284
(D5xC22:C4):7C2 = C10.422+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):7C2320,1285
(D5xC22:C4):8C2 = D20:21D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):8C2320,1302
(D5xC22:C4):9C2 = C10.532+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):9C2320,1309
(D5xC22:C4):10C2 = D5xC22.D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):10C2320,1324
(D5xC22:C4):11C2 = C10.1202+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):11C2320,1325
(D5xC22:C4):12C2 = C10.1212+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):12C2320,1326
(D5xC22:C4):13C2 = C10.612+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):13C2320,1329
(D5xC22:C4):14C2 = C10.1222+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):14C2320,1330
(D5xC22:C4):15C2 = C10.622+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):15C2320,1331
(D5xC22:C4):16C2 = D5xC4.4D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):16C2320,1345
(D5xC22:C4):17C2 = D20:10D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):17C2320,1348
(D5xC22:C4):18C2 = C42:20D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):18C2320,1350
(D5xC22:C4):19C2 = C42:21D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):19C2320,1351
(D5xC22:C4):20C2 = C42:23D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):20C2320,1376
(D5xC22:C4):21C2 = C42:24D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):21C2320,1377
(D5xC22:C4):22C2 = D5xC23:C4φ: C2/C1C2 ⊆ Out D5xC22:C4408+(D5xC2^2:C4):22C2320,370
(D5xC22:C4):23C2 = C24.24D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):23C2320,1158
(D5xC22:C4):24C2 = C24.27D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):24C2320,1162
(D5xC22:C4):25C2 = C42:7D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):25C2320,1193
(D5xC22:C4):26C2 = C42:10D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):26C2320,1199
(D5xC22:C4):27C2 = C42:11D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):27C2320,1217
(D5xC22:C4):28C2 = D20:23D4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):28C2320,1222
(D5xC22:C4):29C2 = C42:16D10φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4):29C2320,1228
(D5xC22:C4):30C2 = C4xD4xD5φ: trivial image80(D5xC2^2:C4):30C2320,1216

Non-split extensions G=N.Q with N=D5xC22:C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC22:C4).1C2 = D5xC22:Q8φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4).1C2320,1298
(D5xC22:C4).2C2 = C10.512+ 1+4φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4).2C2320,1306
(D5xC22:C4).3C2 = D5xC42:2C2φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4).3C2320,1375
(D5xC22:C4).4C2 = (C22xF5):C4φ: C2/C1C2 ⊆ Out D5xC22:C4408+(D5xC2^2:C4).4C2320,204
(D5xC22:C4).5C2 = D10:(C4:C4)φ: C2/C1C2 ⊆ Out D5xC22:C440(D5xC2^2:C4).5C2320,1037
(D5xC22:C4).6C2 = C10.(C4xD4)φ: C2/C1C2 ⊆ Out D5xC22:C480(D5xC2^2:C4).6C2320,1038
(D5xC22:C4).7C2 = C22:C4xF5φ: C2/C1C2 ⊆ Out D5xC22:C440(D5xC2^2:C4).7C2320,1036
(D5xC22:C4).8C2 = D5xC42:C2φ: trivial image80(D5xC2^2:C4).8C2320,1192

׿
x
:
Z
F
o
wr
Q
<